The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 0 X X 2 X X X X X X 0 2 X X 0 2 0 2 2 2 2 2 1 1 1 1 1 1 1 1 X 0 0 0 0 X 1 1 1 1 1 1 1 1 X X X 2 0 X 2 X X 0 0 X 0 X X 2 0 X 2 0 X 0 X 0 0 X+2 X+2 0 0 X X 0 0 X+2 X+2 2 2 X X+2 2 2 X+2 X 2 2 X X+2 2 2 X+2 X 2 X X 0 X+2 X X+2 X+2 X 2 0 X+2 X X X+2 X+2 0 2 0 2 X X X X 0 0 0 0 2 2 2 2 X X X X X X 2 2 0 0 2 2 0 0 X X X 0 X X X 0 2 2 2 X+2 X 0 2 2 2 X+2 X 0 0 X X 0 X+2 X+2 0 2 X+2 X+2 2 2 X X 2 2 X X 0 2 X X+2 2 0 X+2 X+2 2 0 X+2 X 0 X X 2 X X 0 0 2 X X X X 2 0 0 2 X X X X X X+2 X X+2 0 0 2 2 2 2 0 0 X+2 X+2 X X+2 X X+2 X X X+2 X+2 X+2 X+2 X X X X 2 0 0 0 2 0 0 2 2 0 2 2 2 0 0 2 0 0 0 0 2 2 2 0 2 2 0 2 0 0 2 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 2 2 0 0 2 2 0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0 2 0 0 2 0 2 2 2 0 2 2 2 0 2 0 0 0 2 2 0 2 generates a code of length 97 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 96. Homogenous weight enumerator: w(x)=1x^0+210x^96+32x^100+12x^112+1x^128 The gray image is a code over GF(2) with n=388, k=8 and d=192. This code was found by Heurico 1.16 in 1.28 seconds.